Please use this identifier to cite or link to this item:
Title: Multi-criteria decision making based architecture selection for single-hidden layer feedforward neural networks
Author(s): Wang, Philips Fu Lee 
Xie, Haoran 
Author(s): Wang, R.
Feng, J.
Xu, C.
Issue Date: 2019
Publisher: Springer
Journal: International Journal of Machine Learning and Cybernetics 
Volume: 10
Issue: 4
Start page: 655
End page: 666
Architecture selection is a fundamental problem in artificial neural networks, which could be treated as a decision making process that evaluates, ranks, and makes choices from a set of network structures. Traditional methods evaluate a network structure by designing a criterion based on a validation model or an error bound model. On one hand, the time complexity of a validation model is usually high; on the other hand, different validation models or error bound models may lead to different (even conflicting) results, which post challenges to the traditional single criterion-based architecture selection methods. In the area of decision making, many problems employed multiple criteria since the performance is better than using a single criterion. In this paper, we propose a multi-criteria decision making based architecture selection algorithm for single-hidden layer feedforward neural networks trained by extreme learning machine. Two criteria are incorporated into the selection process, i.e., training accuracy and the Q-value estimated by the localized generalization error model. The training accuracy reflects the capability of the model on correctly categorizing the known samples, and the Q-value estimated by localized generalization error model reflects the size of the neighbourhood of training samples in which the model can predict unseen samples with confidence. By achieving a trade-off between these two criteria, a new architecture selection algorithm is proposed. Experimental comparisons demonstrate the feasibility and effectiveness of the proposed method.
DOI: 10.1007/s13042-017-0746-9
CIHE Affiliated Publication: Yes
Appears in Collections:CIS Publication

SFX Query Show full item record

Google ScholarTM




Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.