Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/3108
Title: On the Love strain form of naturally curved and twisted rods
Author(s): Leung, Andrew Yee Tak 
Author(s): Chan, J. K. W.
Issue Date: 1997
Publisher: Elsevier
Journal: Thin-Walled Structures 
Volume: 28
Issue: 3-4
Start page: 253
End page: 267
Abstract: 
Love proposed in 1944 [A.E.H. Love, A Treatise on the Mathematical Theory of Elasticity. Dover Publications, New York, 1944] that the nonvanishing (linear) strain components of a naturally curved and twist spatial rod, whose centroidal axis is along x and cross-section is in yz plane, can be represented nicely in the form ϵxx = e1 + zk2 − yk3ϵxy = e2 − zk1ϵ = e3 + yk1 where e1, e2, e3 are the strain components at y = z = 0 and k1, k2, k3 are the curvatures. Functions e1, e2, e3, k1, k2, k3 depend on x alone. Mottershead [J. E. Mottershead, “Finite elements for dynamical analysis for helical rods”, International Journal of Mechanical Sciences, 22, (1980), pp 252–283], Pearson and Wittrick [D. Pearson and W.H. Witrick “An exact solution for the vibration of helical springs using a Bernoulli-Euler Model”, International Journal for Mechanical Sciences, 28, (1986), pp 83–96], Leung [A.Y.T. Leung “Exact shape functions for helix- elements”, Finite Elements in Analysis and Design, 9, (1991), pp 23–32], and Tabarrok and Xiong [B. Tabarrok and Y. Xiong, “On the buckling equations for spatial rods”, International Journal for Mechanical Sciences, 31, (1980), pp 179–192] have made use of the Love form. We shall show that the Love form is not even valid for two-dimensionally curved beams when shear deformation is considered. The fact that the differential length ds at point P, on the cross-section with distance y, z away from the centroidal axis is different from the differential length dx at point S on the centroidal axis has been neglected. In fact ds = (1 − k3y + k2z)dx, where k; are initial curvatures, which contribute to the strain components of the first order of curvatures.
URI: https://repository.cihe.edu.hk/jspui/handle/cihe/3108
DOI: 10.1016/S0263-8231(97)00045-1
CIHE Affiliated Publication: No
Appears in Collections:CIS Publication

SFX Query Show full item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.