Please use this identifier to cite or link to this item:
https://repository.cihe.edu.hk/jspui/handle/cihe/3108
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Leung, Andrew Yee Tak | en_US |
dc.contributor.other | Chan, J. K. W. | - |
dc.date.accessioned | 2022-05-07T06:42:42Z | - |
dc.date.available | 2022-05-07T06:42:42Z | - |
dc.date.issued | 1997 | - |
dc.identifier.uri | https://repository.cihe.edu.hk/jspui/handle/cihe/3108 | - |
dc.description.abstract | Love proposed in 1944 [A.E.H. Love, <i>A Treatise on the Mathematical Theory of Elasticity</i>. Dover Publications, New York, 1944] that the nonvanishing (linear) strain components of a naturally curved and twist spatial rod, whose centroidal axis is along x and cross-section is in yz plane, can be represented nicely in the form ϵxx = e<sub>1</sub> + zk<sub>2</sub> − yk<sub>3</sub>ϵ<sub>xy</sub> = e<sub>2</sub> − zk<sub>1</sub>ϵ = e<sub>3</sub> + yk<sub>1</sub> where e<sub>1</sub>, e<sub>2</sub>, e<sub>3</sub> are the strain components at y = z = 0 and k<sub>1</sub>, k<sub>2</sub>, k<sub>3</sub> are the curvatures. Functions e<sub>1</sub>, e<sub>2</sub>, e<sub>3</sub>, k<sub>1</sub>, k<sub>2</sub>, k<sub>3</sub> depend on x alone. Mottershead [J. E. Mottershead, “Finite elements for dynamical analysis for helical rods”, International Journal of Mechanical Sciences, 22, (1980), pp 252–283], Pearson and Wittrick [D. Pearson and W.H. Witrick “An exact solution for the vibration of helical springs using a Bernoulli-Euler Model”, International Journal for Mechanical Sciences, 28, (1986), pp 83–96], Leung [A.Y.T. Leung “Exact shape functions for helix- elements”, Finite Elements in Analysis and Design, 9, (1991), pp 23–32], and Tabarrok and Xiong [B. Tabarrok and Y. Xiong, “On the buckling equations for spatial rods”, International Journal for Mechanical Sciences, 31, (1980), pp 179–192] have made use of the Love form. We shall show that the Love form is not even valid for two-dimensionally curved beams when shear deformation is considered. The fact that the differential length ds at point P, on the cross-section with distance y, z away from the centroidal axis is different from the differential length dx at point S on the centroidal axis has been neglected. In fact ds = (1 − k<sub>3</sub>y + k<sub>2</sub>z)dx, where k; are initial curvatures, which contribute to the strain components of the first order of curvatures. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.ispartof | Thin-Walled Structures | en_US |
dc.title | On the Love strain form of naturally curved and twisted rods | en_US |
dc.type | journal article | en_US |
dc.identifier.doi | 10.1016/S0263-8231(97)00045-1 | - |
dc.contributor.affiliation | School of Computing and Information Sciences | en_US |
dc.relation.issn | 0263-8231 | en_US |
dc.description.volume | 28 | en_US |
dc.description.issue | 3-4 | en_US |
dc.description.startpage | 253 | en_US |
dc.description.endpage | 267 | en_US |
dc.cihe.affiliated | No | - |
item.languageiso639-1 | en | - |
item.fulltext | No Fulltext | - |
item.openairetype | journal article | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_6501 | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Yam Pak Charitable Foundation School of Computing and Information Sciences | - |
Appears in Collections: | CIS Publication |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.