Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/3108
DC FieldValueLanguage
dc.contributor.authorLeung, Andrew Yee Taken_US
dc.contributor.otherChan, J. K. W.-
dc.date.accessioned2022-05-07T06:42:42Z-
dc.date.available2022-05-07T06:42:42Z-
dc.date.issued1997-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/3108-
dc.description.abstractLove proposed in 1944 [A.E.H. Love, <i>A Treatise on the Mathematical Theory of Elasticity</i>. Dover Publications, New York, 1944] that the nonvanishing (linear) strain components of a naturally curved and twist spatial rod, whose centroidal axis is along x and cross-section is in yz plane, can be represented nicely in the form ϵxx = e<sub>1</sub> + zk<sub>2</sub> − yk<sub>3</sub>ϵ<sub>xy</sub> = e<sub>2</sub> − zk<sub>1</sub>ϵ = e<sub>3</sub> + yk<sub>1</sub> where e<sub>1</sub>, e<sub>2</sub>, e<sub>3</sub> are the strain components at y = z = 0 and k<sub>1</sub>, k<sub>2</sub>, k<sub>3</sub> are the curvatures. Functions e<sub>1</sub>, e<sub>2</sub>, e<sub>3</sub>, k<sub>1</sub>, k<sub>2</sub>, k<sub>3</sub> depend on x alone. Mottershead [J. E. Mottershead, “Finite elements for dynamical analysis for helical rods”, International Journal of Mechanical Sciences, 22, (1980), pp 252–283], Pearson and Wittrick [D. Pearson and W.H. Witrick “An exact solution for the vibration of helical springs using a Bernoulli-Euler Model”, International Journal for Mechanical Sciences, 28, (1986), pp 83–96], Leung [A.Y.T. Leung “Exact shape functions for helix- elements”, Finite Elements in Analysis and Design, 9, (1991), pp 23–32], and Tabarrok and Xiong [B. Tabarrok and Y. Xiong, “On the buckling equations for spatial rods”, International Journal for Mechanical Sciences, 31, (1980), pp 179–192] have made use of the Love form. We shall show that the Love form is not even valid for two-dimensionally curved beams when shear deformation is considered. The fact that the differential length ds at point P, on the cross-section with distance y, z away from the centroidal axis is different from the differential length dx at point S on the centroidal axis has been neglected. In fact ds = (1 − k<sub>3</sub>y + k<sub>2</sub>z)dx, where k; are initial curvatures, which contribute to the strain components of the first order of curvatures.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofThin-Walled Structuresen_US
dc.titleOn the Love strain form of naturally curved and twisted rodsen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/S0263-8231(97)00045-1-
dc.contributor.affiliationSchool of Computing and Information Sciencesen_US
dc.relation.issn0263-8231en_US
dc.description.volume28en_US
dc.description.issue3-4en_US
dc.description.startpage253en_US
dc.description.endpage267en_US
dc.cihe.affiliatedNo-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.openairetypejournal article-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
crisitem.author.deptYam Pak Charitable Foundation School of Computing and Information Sciences-
Appears in Collections:CIS Publication
SFX Query Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.