Please use this identifier to cite or link to this item:
Title: Fast image interpolation with decision tree
Author(s): Siu, Wan Chi 
Author(s): Huang, J.-J.
Issue Date: 2015
Publisher: IEEE
Related Publication(s): 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
Start page: 1221
End page: 1225
This paper proposes a fast image interpolation method using decision tree. This new fast image interpolation with decision tree (FIDT) method can achieve state-of-the-art image interpolation performance and requires only 10% computational time of the soft adaptive interpolation (SAI) method. During training, the proposed method recursively divides the training data at a non-leaf node into two child nodes according to the binary test which can maximize the information gain of a division. At the end, for each of the leaf node, a linear regression model is learned according to the training data at that leaf node. In the image interpolation phase, input image patches are passed into the learned decision tree. According to the stored binary test at each non-leaf node, each input image patch will be classified into its left or right child node until a leaf node is reached. The high-resolution image patch of the input image patch can then be predicted efficiently using the learned linear regression model at the leaf node.
DOI: 10.1109/ICASSP.2015.7178164
CIHE Affiliated Publication: No
Appears in Collections:CIS Publication

SFX Query Show full item record

Google ScholarTM




Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.