Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/786
Title: MobiFeed: A location-aware news feed framework for moving users
Author(s): Poon, Chung Keung 
Author(s): Xu, W.
Chow, C.-Y.
Yiu, M. L.
Li, Q.
Issue Date: 2015
Publisher: Springer
Journal: Geoinformatica 
Volume: 19
Issue: 3
Start page: 633
End page: 669
Abstract: 
A location-aware news feed system enables mobile users to share geo-tagged user-generated messages, e.g., a user can receive nearby messages that are the most relevant to her. In this paper, we present MobiFeed that is a framework designed for scheduling news feeds for mobile users. MobiFeed consists of three key functions, location prediction, relevance measure, and news feed scheduler. The location prediction function is designed to estimate a mobile user’s locations based on a path prediction algorithm. The relevance measure function is implemented by combining the vector space model with non-spatial and spatial factors to determine the relevance of a message to a user. The news feed scheduler works with the other two functions to generate news feeds for a mobile user at her current and predicted locations with the best overall quality. We propose a heuristic algorithm as well as an optimal algorithm for the location-aware news feed scheduler. The performance of MobiFeed is evaluated through extensive experiments using a real road map and a real social network data set. The scalability of MobiFeed is also investigated using a synthetic data set. Experimental results show that MobiFeed obtains a relevance score two times higher than the state-of-the-art approach, and it can scale up to a large number of geo-tagged messages.
URI: https://repository.cihe.edu.hk/jspui/handle/cihe/786
DOI: 10.1007/s10707-014-0223-5
CIHE Affiliated Publication: Yes
Appears in Collections:CIS Publication

Files in This Item:
File Description SizeFormat
View Online223 BHTMLView/Open
SFX Query Show full item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.