Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/786
DC FieldValueLanguage
dc.contributor.authorPoon, Chung Keungen_US
dc.contributor.otherXu, W.-
dc.contributor.otherChow, C.-Y.-
dc.contributor.otherYiu, M. L.-
dc.contributor.otherLi, Q.-
dc.date.accessioned2021-07-07T07:26:06Z-
dc.date.available2021-07-07T07:26:06Z-
dc.date.issued2015-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/786-
dc.description.abstractA location-aware news feed system enables mobile users to share geo-tagged user-generated messages, e.g., a user can receive nearby messages that are the most relevant to her. In this paper, we present MobiFeed that is a framework designed for scheduling news feeds for mobile users. MobiFeed consists of three key functions, <i>location prediction</i>, <i>relevance measure</i>, and <i>news feed scheduler</i>. The <i>location prediction</i> function is designed to estimate a mobile user’s locations based on a path prediction algorithm. The <i>relevance measure</i> function is implemented by combining the vector space model with non-spatial and spatial factors to determine the relevance of a message to a user. The <i>news feed scheduler</i> works with the other two functions to generate news feeds for a mobile user at her current and predicted locations with the best overall quality. We propose a heuristic algorithm as well as an optimal algorithm for the location-aware <i>news feed scheduler</i>. The performance of MobiFeed is evaluated through extensive experiments using a real road map and a real social network data set. The scalability of MobiFeed is also investigated using a synthetic data set. Experimental results show that MobiFeed obtains a relevance score two times higher than the state-of-the-art approach, and it can scale up to a large number of geo-tagged messages.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofGeoinformaticaen_US
dc.titleMobiFeed: A location-aware news feed framework for moving usersen_US
dc.typejournal articleen_US
dc.identifier.doi10.1007/s10707-014-0223-5-
dc.contributor.affiliationSchool of Computing and Information Sciencesen_US
dc.relation.issn1573-7624en_US
dc.description.volume19en_US
dc.description.issue3en_US
dc.description.startpage633en_US
dc.description.endpage669en_US
dc.cihe.affiliatedYes-
item.languageiso639-1en-
item.fulltextWith Fulltext-
item.openairetypejournal article-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
crisitem.author.deptYam Pak Charitable Foundation School of Computing and Information Sciences-
Appears in Collections:CIS Publication
Files in This Item:
File Description SizeFormat
View Online223 BHTMLView/Open
SFX Query Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.