Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/533
Title: Social emotion classification of short text via topic-level maximum entropy model
Author(s): Xie, Haoran 
Wang, Philips Fu Lee 
Author(s): Rao, Y.
Li, J.
Jin, F.
Li, Q.
Issue Date: 2016
Publisher: Elsevier
Journal: Information & Management 
Volume: 53
Issue: 8
Start page: 978
End page: 986
Abstract: 
With the rapid proliferation of Web 2.0, the identification of emotions embedded in user-contributed comments at the social web is both valuable and essential. By exploiting large volumes of sentimental text, we can extract user preferences to enhance sales, develop marketing strategies, and optimize supply chain for electronic commerce. Pieces of information in the social web are usually short, such as tweets, questions, instant messages, messages, and news headlines. Short text differs from normal text because of its sparse word co-occurrence patterns, which hampers efforts to apply social emotion classification models. Most existing methods focus on either exploiting the social emotions of individual words or the association of social emotions with latent topics learned from normal documents. In this paper, we propose a topic-level maximum entropy (TME) model for social emotion classification over short text. TME generates topic-level features by modeling latent topics, multiple emotion labels, and valence scored by numerous readers jointly. The overfitting problem in the maximum entropy principle is also alleviated by mapping the features to the concept space. An experiment on real-world short documents validates the effectiveness of TME on social emotion classification over sparse words.
URI: https://repository.cihe.edu.hk/jspui/handle/cihe/533
DOI: 10.1016/j.im.2016.04.005
CIHE Affiliated Publication: Yes
Appears in Collections:CIS Publication

SFX Query Show full item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.