Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/4428
Title: Semi-supervised subspace clustering via tensor low-rank representation
Author(s): Liu, Hui 
Author(s): Jia, Y.
Lu, G.
Hou, J.
Issue Date: 2023
Publisher: IEEE
Journal: IEEE Transactions on Circuits and Systems for Video Technology 
Volume: 33
Issue: 7
Start page: 3455
End page: 3461
Abstract: 
In this letter, we propose a novel semi-supervised subspace clustering method, which is able to simultaneously augment the initial supervisory information and construct a discriminative affinity matrix. By representing the limited amount of supervisory information as a pairwise constraint matrix, we observe that the ideal affinity matrix for clustering shares the same low-rank structure as the ideal pairwise constraint matrix. Thus, we stack the two matrices into a 3-D tensor, where a global low-rank constraint is imposed to promote the affinity matrix construction and augment the initial pairwise constraints synchronously. Besides, we use the local geometry structure of input samples to complement the global low-rank prior to achieve better affinity matrix learning. The proposed model is formulated as a Laplacian graph regularized convex low-rank tensor representation problem, which is further solved with an alternative iterative algorithm. In addition, we propose to refine the affinity matrix with the augmented pairwise constraints. Comprehensive experimental results on eight commonly-used benchmark datasets demonstrate the superiority of our method over state-of-the-art methods. The code is publicly available at https://github.com/GuanxingLu/Subspace-Clustering .
URI: https://repository.cihe.edu.hk/jspui/handle/cihe/4428
DOI: 10.1109/TCSVT.2023.3234556
CIHE Affiliated Publication: Yes
Appears in Collections:CIS Publication

SFX Query Show full item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.