Please use this identifier to cite or link to this item:
https://repository.cihe.edu.hk/jspui/handle/cihe/2695
Title: | Analytic trapezoidal Fourier p-element for vibrating plane problems | Author(s): | Leung, Andrew Yee Tak | Author(s): | Zhu, B. Zheng, J. Yang, H. |
Issue Date: | 2004 | Publisher: | Elsevier | Journal: | Journal of Sound and Vibration | Volume: | 271 | Issue: | 1-2 | Start page: | 67 | End page: | 81 | Abstract: | A trapezoidal Fourier p-element for the in-plane vibration analysis of two-dimensional elastic solids is presented. Trigonometric functions are used as enriching functions instead of polynomials to avoid ill-conditioning problems. The element matrices are analytically integrated in closed form. With the additional Fourier degrees of freedom (d.o.f.s), the accuracy of the computed natural frequencies is greatly increased. One element can predict many modes accurately. Since a triangle can be divided into three trapezoidal elements, the range of application is much wider than the previously derived rectangular Fourier p-element. Numerical examples show that convergence is very fast with respect to the number of trigonometric terms. Comparison of natural modes calculated by the trapezoidal Fourier p-element and the conventional finite elements is carried out. The results show that the trapezoidal Fourier p-element produces much higher accurate modes than the conventional finite elements with the same number of d.o.f.s. For a benchmark problem, the condition number of the mass matrix using Legendre p-element increases rapidly and it becomes non-positive with 22 terms. The condition numbers of the Fourier p-element matrices are consistently much lower than those of the Legendre p-element. |
URI: | https://repository.cihe.edu.hk/jspui/handle/cihe/2695 | DOI: | 10.1016/S0022-460X(03)00263-3 | CIHE Affiliated Publication: | No |
Appears in Collections: | CIS Publication |
Show full item record
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.