Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/974
DC FieldValueLanguage
dc.contributor.authorPoon, Chung Keungen_US
dc.contributor.otherLiu, S.-
dc.date.accessioned2021-07-19T06:49:35Z-
dc.date.available2021-07-19T06:49:35Z-
dc.date.issued2014-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/974-
dc.description.abstractMining robust frequent itemsets has attracted much attention due to its wide applications in noisy data. In this paper, we study the problem of mining proportional fault-tolerant frequent itemsets in a large transactional database. A fault-tolerant frequent itemset allows a small amount of errors in each item and each supporting transaction. This problem is challenging since the anti-monotone property does not hold for candidate generation and the problem of fault-tolerant support counting is known to be NP-hard. We propose techniques that substantially speed up the state-of-the-art algorithm for the problem. We also develop an efficient heuristic method to solve an approximation version of the problem. Our experimental results show that the proposed speedup techniques are effective. In addition, our heuristic algorithm is much faster than the exact algorithms while the error is acceptable.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.titleOn mining proportional fault-tolerant frequent itemsetsen_US
dc.typeconference proceedingsen_US
dc.relation.publicationDatabase Systems for Advanced Applications (19th International Conference, DASFAA 2014) Proceedings, Part Ien_US
dc.identifier.doi10.1007/978-3-319-05810-8_23-
dc.contributor.affiliationSchool of Computing and Information Sciencesen_US
dc.relation.isbn9783319058092en_US
dc.description.startpage342en_US
dc.description.endpage356en_US
dc.cihe.affiliatedYes-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.openairetypeconference proceedings-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.cerifentitytypePublications-
crisitem.author.deptYam Pak Charitable Foundation School of Computing and Information Sciences-
Appears in Collections:CIS Publication
SFX Query Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.