Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/972
DC FieldValueLanguage
dc.contributor.authorPang, Raymond Wai Manen_US
dc.contributor.otherLiang, S.-
dc.contributor.otherChoi, K.-S.-
dc.contributor.otherQin, J.-
dc.contributor.otherHeng, P.-A.-
dc.date.accessioned2021-07-19T06:22:40Z-
dc.date.available2021-07-19T06:22:40Z-
dc.date.issued2014-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/972-
dc.description.abstractPhase synchronization has been employed to study brain networks and connectivity patterns. The phase locking value (PLV) is one of the most effective measures widely used for phase synchronization analysis. We first calculate the PLVs of the pair-wise intrinsic mode functions (IMFs) based on multivariate empirical mode decomposition (MEMD) method. Next, the average PLV of the prominent pairs relative to the rest duration is adopted for the classification of motor imagery (MI) tasks. Comparative analysis with the EMD-based PLV method, the proposed method has a significant increase in feature separability for most subjects. This paper demonstrates that MEMD-based PLV method can provide an effective feature in the MI task classification and the potential for BCI applications.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.titleClassification of motor imagery tasks using phase synchronization analysis of EEG based on multivariate empirical mode decompositionen_US
dc.typeconference proceedingsen_US
dc.relation.publicationProceedings of the 4th IEEE International Conference on Information Science and Technology (ICIST 2014)en_US
dc.identifier.doi10.1109/ICIST.2014.6920567-
dc.contributor.affiliationSchool of Computing and Information Sciencesen_US
dc.relation.isbn9781479948086en_US
dc.description.startpage674en_US
dc.description.endpage677en_US
dc.cihe.affiliatedYes-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.openairetypeconference proceedings-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.cerifentitytypePublications-
crisitem.author.deptYam Pak Charitable Foundation School of Computing and Information Sciences-
Appears in Collections:CIS Publication
SFX Query Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.