Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/883
DC FieldValueLanguage
dc.contributor.authorPang, Raymond Wai Manen_US
dc.contributor.otherWei, M.-
dc.contributor.otherYu, J.-
dc.contributor.otherWang, J.-
dc.contributor.otherQin, J.-
dc.contributor.otherLiu, L.-
dc.contributor.otherHeng, P.-A.-
dc.date.accessioned2021-07-12T14:04:18Z-
dc.date.available2021-07-12T14:04:18Z-
dc.date.issued2015-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/883-
dc.description.abstractMost mesh denoising techniques utilize only either the facet normal field or the vertex normal field of a mesh surface. The two normal fields, though contain some redundant geometry information of the same model, can provide additional information that the other field lacks. Thus, considering only one normal field is likely to overlook some geometric features. In this paper, we take advantage of the piecewise consistent property of the two normal fields and propose an effective framework in which they are filtered and integrated using a novel method to guide the denoising process. Our key observation is that, decomposing the inconsistent field at challenging regions into multiple piecewise consistent fields makes the two fields complementary to each other and produces better results. Our approach consists of three steps: vertex classification, bi-normal filtering, and vertex position update. The classification step allows us to filter the two fields on a piecewise smooth surface rather than a surface that is smooth everywhere. Based on the piecewise consistence of the two normal fields, we filtered them using a piecewise smooth region clustering strategy. To benefit from the bi-normal filtering, we design a quadratic optimization algorithm for vertex position update. Experimental results on synthetic and real data show that our algorithm achieves higher quality results than current approaches on surfaces with multifarious geometric features and irregular surface sampling.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartofIEEE Transactions on Visualization and Computer Graphicsen_US
dc.titleBi-normal filtering for mesh denoisingen_US
dc.typejournal articleen_US
dc.identifier.doi10.1109/TVCG.2014.2326872-
dc.contributor.affiliationSchool of Computing and Information Sciencesen_US
dc.relation.issn1941-0506en_US
dc.description.volume21en_US
dc.description.issue1en_US
dc.description.startpage43en_US
dc.description.endpage55en_US
dc.cihe.affiliatedYes-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.languageiso639-1en-
item.openairetypejournal article-
item.fulltextNo Fulltext-
crisitem.author.deptSchool of Computing and Information Sciences-
Appears in Collections:CIS Publication
SFX Query Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.