Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/864
DC FieldValueLanguage
dc.contributor.authorXie, Haoranen_US
dc.contributor.otherPang, J.-
dc.contributor.otherLi, X.-
dc.contributor.otherRao, Y.-
dc.date.accessioned2021-07-12T07:14:40Z-
dc.date.available2021-07-12T07:14:40Z-
dc.date.issued2016-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/864-
dc.description.abstractWith the rapid development of social media services such as Twitter, Sina Weibo and so forth, short texts are becoming more and more prevalent. However, inferring topics from short texts is always full of challenges for many content analysis tasks because of the sparsity of word co-occurrence patterns in short texts. In this paper, we propose a classification model named sentimental biterm topic model (SBTM), which is applied to sentiment classification over short texts. To alleviate the problem of sparsity in short texts, the similarity between words and documents are firstly estimated by singular value decomposition. Then, the most similar words are added to each short document in the corpus. Extensive evaluations on sentiment detection of short text validate the effectiveness of the proposed method.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.titleSBTM: Topic modeling over short textsen_US
dc.typeconference proceedingsen_US
dc.relation.publicationDatabase Systems for Advanced Applications (DASFAA 2016 International Workshops) Proceedingsen_US
dc.identifier.doihttps://doi.org/10.1007/978-3-319-32055-7_4-
dc.contributor.affiliationSchool of Computing and Information Sciencesen_US
dc.relation.isbn9783319320540en_US
dc.description.startpage43en_US
dc.description.endpage56en_US
dc.cihe.affiliatedYes-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.openairetypeconference proceedings-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.cerifentitytypePublications-
crisitem.author.deptYam Pak Charitable Foundation School of Computing and Information Sciences-
Appears in Collections:CIS Publication
SFX Query Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.