Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/783
DC FieldValueLanguage
dc.contributor.authorWang, Philips Fu Leeen_US
dc.contributor.authorXie, Haoran-
dc.contributor.otherWu, Z.-
dc.contributor.otherRao, Y.-
dc.contributor.otherLi, X.-
dc.contributor.otherLi, J.-
dc.date.accessioned2021-07-07T02:52:37Z-
dc.date.available2021-07-07T02:52:37Z-
dc.date.issued2015-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/783-
dc.description.abstractAs an important medium used to describe events, the short text is effective to convey emotions and communicate affective states. In this paper, we proposed a classification method based on probabilistic topic model, which greatly improve the performance of sentimental categorization methods on short text. To solve the problems of sparsity and context-dependency, we extract hidden topics behind the text and associate different words by the same topic. Evaluation on sentiment detection of short text verified the effectiveness of the proposed method.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.titleSentiment detection of short text via probabilistic topic modelingen_US
dc.typeconference proceedingsen_US
dc.relation.publicationDatabase Systems for Advanced Applications (DASFAA 2015 International Workshops) Revised Selected Papersen_US
dc.identifier.doi10.1007/978-3-319-22324-7_7-
dc.contributor.affiliationSchool of Computing and Information Sciencesen_US
dc.relation.isbn9783319223230en_US
dc.description.startpage76en_US
dc.description.endpage85en_US
dc.cihe.affiliatedYes-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.openairetypeconference proceedings-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.cerifentitytypePublications-
crisitem.author.deptRita Tong Liu School of Business and Hospitality Management-
crisitem.author.deptYam Pak Charitable Foundation School of Computing and Information Sciences-
Appears in Collections:CIS Publication
SFX Query Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.