Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/531
DC FieldValueLanguage
dc.contributor.authorPang, Raymond Wai Man-
dc.contributor.otherLiang, S.-
dc.contributor.otherChoi, K.-S.-
dc.contributor.otherQin, J.-
dc.contributor.otherWang, Q.-
dc.contributor.otherHeng, P.-A.-
dc.date.accessioned2021-04-13T09:23:25Z-
dc.date.available2021-04-13T09:23:25Z-
dc.date.issued2016-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/531-
dc.description.abstractBACKGROUND: The effective connectivity refers explicitly to the influence that one neural system exerts over another in frequency domain. To investigate the propagation of neuronal activity in certain frequency can help us reveal the mechanisms of information processing by brain. OBJECTIVE: This study investigates the detection of effective connectivity and analyzes the complex brain network connection mode associated with motor imagery (MI) tasks. METHODS: The effective connectivity among the primary motor area is firstly explored using partial directed coherence (PDC) combined with multivariate empirical mode decomposition (MEMD) based on electroencephalography (EEG) data. Then a new approach is proposed to analyze the connection mode of the complex brain network via the information flow pattern. RESULTS: Our results demonstrate that significant effective connectivity exists in the bilateral hemisphere during the tasks, regardless of the left-/right-hand MI tasks. Furthermore, the out-in rate results of the information flow reveal the existence of the contralateral lateralization. The classification performance of left-/right-hand MI tasks can be improved by careful selection of intrinsic mode functions (IMFs). CONCLUSION: The proposed method can provide efficient features for the detection of MI tasks and has great potential to be applied in brain computer interface (BCI).en_US
dc.language.isoenen_US
dc.publisherIOS Pressen_US
dc.relation.ispartofTechnology and Health Careen_US
dc.titleDiscrimination of motor imagery tasks via information flow pattern of brain connectivityen_US
dc.typejournal articleen_US
dc.identifier.doi10.3233/THC-161212-
dc.contributor.affiliationSchool of Computing and Information Sciences-
dc.relation.issn1878-7401en_US
dc.description.volume24en_US
dc.description.issues2en_US
dc.description.startpageS795en_US
dc.description.endpageS801en_US
dc.cihe.affiliatedYes-
item.languageiso639-1en-
item.fulltextWith Fulltext-
item.openairetypejournal article-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
crisitem.author.deptYam Pak Charitable Foundation School of Computing and Information Sciences-
Appears in Collections:CIS Publication
Files in This Item:
File Description SizeFormat
View Online121 BHTMLView/Open
SFX Query Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.