Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/518
DC FieldValueLanguage
dc.contributor.authorWang, Philips Fu Lee-
dc.contributor.otherLi, X.-
dc.contributor.otherPang, J.-
dc.contributor.otherMo, B.-
dc.contributor.otherRao, Y.-
dc.date.accessioned2021-04-08T07:09:24Z-
dc.date.available2021-04-08T07:09:24Z-
dc.date.issued2016-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/518-
dc.description.abstractAs a concise medium to describe events, short text plays an important role to convey the opinions of users. The classification of user emotions based on short text has been a significant topic in social network analysis. Neural Network can obtain good classification performance with high generalization ability. However, conventional neural networks only use a simple back-propagation algorithm to estimate the parameters, which may introduce large instabilities when training deep neural networks by random initializations. In this paper, we apply a pre-training method to deep neural networks based on restricted Boltzmann machines, which aims to gain competitive and stable classification performance of user emotions over short text. Experimental evaluations using real-world datasets validate the effectiveness of our model on the short-text sentiment classification task.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.titleDeep neural network for short-text sentiment classificationen_US
dc.typeconference proceedingsen_US
dc.relation.publicationDatabase Systems for Advanced Applications (DASFAA 2016 International Workshops) Proceedingsen_US
dc.identifier.doi10.1007/978-3-319-32055-7_15-
dc.contributor.affiliationSchool of Computing and Information Sciences-
dc.relation.isbn9783319320540en_US
dc.description.startpage168en_US
dc.description.endpage175en_US
dc.cihe.affiliatedYes-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.openairetypeconference proceedings-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.cerifentitytypePublications-
crisitem.author.deptRita Tong Liu School of Business and Hospitality Management-
Appears in Collections:CIS Publication
SFX Query Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.