Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/512
DC FieldValueLanguage
dc.contributor.authorXie, Haoran-
dc.contributor.authorWang, Philips Fu Lee-
dc.contributor.otherLi, X.-
dc.contributor.otherRao, Y.-
dc.contributor.otherChen, Y.-
dc.contributor.otherLiu, X.-
dc.contributor.otherHuang, H.-
dc.date.accessioned2021-04-07T09:51:07Z-
dc.date.available2021-04-07T09:51:07Z-
dc.date.issued2016-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/512-
dc.description.abstractWith the extensive growth of social media services, many users express their feelings and opinions through news articles, blogs and tweets/microblogs. To discover the connections between emotions evoked in a user by varied-scale documents effectively, the paper is concerned with the problem of sentiment analysis over online news. Different from previous models which treat training documents uniformly, a weighted multi-label classification model (WMCM) is proposed by introducing the concept of “emotional concentration” to estimate the weight of training documents, in addition to tackle the issue of noisy samples for each emotion. The topic assignment is also used to distinguish different emotional senses of the same word at the semantic level. Experimental evaluations using short news headlines and long documents validate the effectiveness of the proposed WMCM for sentiment prediction.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.titleWeighted multi-label classification model for sentiment analysis of online newsen_US
dc.typeconference proceedingsen_US
dc.relation.publicationProceedings of the 2016 International Conference on Big Data and Smart Computing (BigComp)en_US
dc.identifier.doi10.1109/BIGCOMP.2016.7425916-
dc.contributor.affiliationSchool of Computing and Information Sciences-
dc.relation.isbn9781467387965en_US
dc.description.startpage215en_US
dc.description.endpage222en_US
dc.cihe.affiliatedYes-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.openairetypeconference proceedings-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.cerifentitytypePublications-
crisitem.author.deptYam Pak Charitable Foundation School of Computing and Information Sciences-
crisitem.author.deptRita Tong Liu School of Business and Hospitality Management-
Appears in Collections:CIS Publication
SFX Query Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.