Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/5079
DC FieldValueLanguage
dc.contributor.authorCheung, Stephen Yan Leungen_US
dc.contributor.otherCheung, Y. W.-
dc.contributor.otherWan, A. T. K.-
dc.date.accessioned2025-11-06T04:40:54Z-
dc.date.available2025-11-06T04:40:54Z-
dc.date.issued2009-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/5079-
dc.description.abstractWe observe that daily highs and lows of stock prices do not diverge over time and, hence, adopt the cointegration concept and the related vector error correction model (VECM) to model the daily high, the daily low, and the associated daily range data. The in-sample results attest to the importance of incorporating high–low interactions in modeling the range variable. In evaluating the out-of-sample forecast performance using both mean-squared forecast error and direction of change criteria, it is found that the VECM-based low and high forecasts offer some advantages over alternative forecasts. The VECM-based range forecasts, on the other hand, do not always dominate—the forecast rankings depend on the choice of evaluation criterion and the variables being forecast.en_US
dc.language.isoenen_US
dc.publisherJohn Wiley & Sonsen_US
dc.relation.ispartofJournal of Forecastingen_US
dc.titleA high–low model of daily stock price rangesen_US
dc.typejournal articleen_US
dc.identifier.doi10.1002/for.1087-
dc.contributor.affiliationRita Tong Liu School of Business and Hospitality Managementen_US
dc.relation.issn1099-131Xen_US
dc.description.volume28en_US
dc.description.issue2en_US
dc.description.startpage103en_US
dc.description.endpage119en_US
dc.cihe.affiliatedNo-
item.cerifentitytypePublications-
item.openairetypejournal article-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.fulltextNo Fulltext-
crisitem.author.deptRita Tong Liu School of Business and Hospitality Management-
Appears in Collections:BHM Publication
SFX Query Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.