Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/4966
DC FieldValueLanguage
dc.contributor.authorHang, Ching Namen_US
dc.contributor.otherYu, P.-D.-
dc.contributor.otherChen, S.-
dc.contributor.otherTan, C. W.-
dc.contributor.otherChen, G.-
dc.date.accessioned2025-08-18T02:26:51Z-
dc.date.available2025-08-18T02:26:51Z-
dc.date.issued2023-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/4966-
dc.description.abstractThe COVID-19 pandemic brought not only global devastation but also an unprecedented infodemic of false or misleading information that spread rapidly through online social networks. Network analysis plays a crucial role in the science of fact-checking by modeling and learning the risk of infodemics through statistical processes and computation on mega-sized graphs. This article proposes MEGA, Machine Learning-Enhanced Graph Analytics, a framework that combines feature engineering and graph neural networks to enhance the efficiency of learning performance involving massive graphs. Infodemic risk analysis is a unique application of the MEGA framework, which involves detecting spambots by counting triangle motifs and identifying influential spreaders by computing the distance centrality. The MEGA framework is evaluated using the COVID-19 pandemic Twitter dataset, demonstrating superior computational efficiency and classification accuracy.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartofIEEE Journal of Biomedical and Health Informaticsen_US
dc.titleMEGA: Machine learning-enhanced graph analytics for infodemic risk managementen_US
dc.typejournal articleen_US
dc.identifier.doi10.1109/JBHI.2023.3314632-
dc.contributor.affiliationYam Pak Charitable Foundation School of Computing and Information Sciencesen_US
dc.relation.issn2168-2208en_US
dc.description.volume27en_US
dc.description.issue12en_US
dc.description.startpage6100en_US
dc.description.endpage6111en_US
dc.cihe.affiliatedNo-
item.fulltextNo Fulltext-
item.openairetypejournal article-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.deptYam Pak Charitable Foundation School of Computing and Information Sciences-
Appears in Collections:CIS Publication
SFX Query Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.