Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/4853
DC FieldValueLanguage
dc.contributor.authorLee, Alberten_US
dc.contributor.otherYau, S. T.-Y.-
dc.contributor.otherLeung, E. Y.-M.-
dc.contributor.otherHung, C.-T.-
dc.contributor.otherWong, M. C.-S.-
dc.contributor.otherChong, K.-C.-
dc.contributor.otherYeoh, E.-K.-
dc.date.accessioned2025-07-09T06:30:47Z-
dc.date.available2025-07-09T06:30:47Z-
dc.date.issued2024-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/4853-
dc.description.abstractBackground: Most liver cancer scoring systems focus on patients with preexisting liver diseases such as chronic viral hepatitis or liver cirrhosis. Patients with diabetes are at higher risk of developing liver cancer than the general population. However, liver cancer scoring systems for patients in the absence of liver diseases or those with diabetes remain rare. This study aims to develop a risk scoring system for liver cancer prediction among diabetes patients and a sub-model among diabetes patients without cirrhosis/chronic viral hepatitis. Methods: A retrospective cohort study was performed using electronic health records of Hong Kong. Patients who received diabetes care in general outpatient clinics between 2010 and 2019 without cancer history were included and followed up until December 2019. The outcome was diagnosis of liver cancer during follow-up. A risk scoring system was developed by applying random survival forest in variable selection, and Cox regression in weight assignment. Results: The liver cancer incidence was 0.92 per 1000 person-years. Patients who developed liver cancer (n = 1995) and those who remained free of cancer (n = 1969) during follow-up (median: 6.2 years) were selected for model building. In the final time-to-event scoring system, presence of chronic hepatitis B/C, alanine aminotransferase, age, presence of cirrhosis, and sex were included as predictors. The concordance index was 0.706 (95%CI: 0.676–0.741). In the sub-model for patients without cirrhosis/chronic viral hepatitis, alanine aminotransferase, age, triglycerides, and sex were selected as predictors. Conclusions: The proposed scoring system may provide a parsimonious score for liver cancer risk prediction among diabetes patients.en_US
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.relation.ispartofCancersen_US
dc.titleScoring system for predicting the risk of liver cancer among diabetes patients: A random survival forest-guided approachen_US
dc.typejournal articleen_US
dc.identifier.doi10.3390/cancers16132310-
dc.contributor.affiliationS.K. Yee School of Health Sciencesen_US
dc.relation.issn2072-6694en_US
dc.description.volume16en_US
dc.description.issue13en_US
dc.cihe.affiliatedNo-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.openairetypejournal article-
item.languageiso639-1en-
item.grantfulltextopen-
item.fulltextWith Fulltext-
crisitem.author.deptS.K. Yee School of Health Sciences-
Appears in Collections:HS Publication
Files in This Item:
File Description SizeFormat
View Online88 BHTMLView/Open
SFX Query Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.