Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/4706
DC FieldValueLanguage
dc.contributor.authorLiu, Huien_US
dc.contributor.otherHou, J.-
dc.contributor.otherZhu, Z.-
dc.contributor.otherHou, J.-
dc.contributor.otherZeng, H.-
dc.contributor.otherMeng, D.-
dc.date.accessioned2025-04-30T09:28:05Z-
dc.date.available2025-04-30T09:28:05Z-
dc.date.issued2024-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/4706-
dc.description.abstractIn this paper, we study the problem of efficiently and effectively embedding the high-dimensional spatio-spectral information of hyperspectral (HS) images, guided by feature diversity. Specifically, based on the theoretical formulation that feature diversity is correlated with the rank of the unfolded kernel matrix, we rectify 3D convolution by modifying its topology to enhance the rank upper-bound. This modification yields a rank-enhanced spatial-spectral symmetrical convolution set (ReS<sup>3</sup>-ConvSet), which not only learns diverse and powerful feature representations but also saves network parameters. Additionally, we also propose a novel diversity-aware regularization (DA-Reg) term that directly acts on the feature maps to maximize independence among elements. To demonstrate the superiority of the proposed ReS<sup>3</sup>-ConvSet and DA-Reg, we apply them to various HS image processing and analysis tasks, including denoising, spatial super-resolution, and classification. Extensive experiments show that the proposed approaches outperform state-of-the-art methods both quantitatively and qualitatively to a significant extent.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartofIEEE Transactions on Pattern Analysis and Machine Intelligenceen_US
dc.titleDeep diversity-enhanced feature representation of hyperspectral imagesen_US
dc.typejournal articleen_US
dc.identifier.doi10.1109/TPAMI.2024.3399753-
dc.contributor.affiliationYam Pak Charitable Foundation School of Computing and Information Sciencesen_US
dc.relation.issn1939-3539en_US
dc.description.volume46en_US
dc.description.issue12en_US
dc.description.startpage8123en_US
dc.description.endpage8138en_US
dc.cihe.affiliatedYes-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.languageiso639-1en-
item.openairetypejournal article-
crisitem.author.deptYam Pak Charitable Foundation School of Computing and Information Sciences-
Appears in Collections:CIS Publication
SFX Query Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.