Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/4672
DC FieldValueLanguage
dc.contributor.authorLiu, Huien_US
dc.contributor.otherLyu, X.-
dc.contributor.otherHou, J.-
dc.date.accessioned2025-04-25T07:21:31Z-
dc.date.available2025-04-25T07:21:31Z-
dc.date.issued2024-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/4672-
dc.description.abstractWe propose RainyScape, an unsupervised framework to reconstruct pristine scenes from a collection of multi-view rainy images. RainyScape consists of two main modules: a neural rendering module and a rain-prediction module that incorporates a predictor network and a learnable latent embedding that captures the rain characteristics of the scene. Specifically, leveraging the spectral bias property of neural networks, we first optimize the neural rendering pipeline to obtain a low-frequency scene representation. Subsequently, we jointly optimize the two modules, driven by the proposed adaptive direction-sensitive gradient-based reconstruction loss, which encourages the network to distinguish between scene details and rain streaks, facilitating the propagation of gradients to the relevant components. Extensive experiments on both the classic neural radiance field and the recently proposed 3D Gaussian splatting demonstrate the superiority of our method in effectively eliminating rain streaks and rendering clean images, achieving state-of-the-art performance. The constructed high-quality dataset, source code, and supplementary material are publicly available at https://github.com/lyuxianqiang/RainyScape.en_US
dc.language.isoenen_US
dc.publisherAssociation for Computing Machineryen_US
dc.titleRainyscape: Unsupervised rainy scene reconstruction using decoupled neural renderingen_US
dc.typeconference proceedingsen_US
dc.relation.publicationProceedings of the 32nd ACM International Conference on Multimedia (MM '24)en_US
dc.identifier.doi10.1145/3664647.3681290-
dc.contributor.affiliationYam Pak Charitable Foundation School of Computing and Information Sciencesen_US
dc.relation.isbn9798400706868en_US
dc.description.startpage10920en_US
dc.description.endpage10929en_US
dc.cihe.affiliatedYes-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypeconference proceedings-
item.fulltextWith Fulltext-
item.grantfulltextopen-
crisitem.author.deptYam Pak Charitable Foundation School of Computing and Information Sciences-
Appears in Collections:CIS Publication
Files in This Item:
File Description SizeFormat
View Online126 BHTMLView/Open
SFX Query Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.