Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/4664
DC FieldValueLanguage
dc.contributor.authorChan, Cheuk Yiuen_US
dc.contributor.authorSiu, Wan Chi-
dc.contributor.authorChan, Anthony Hing-Hung-
dc.contributor.otherChan, Y.-H.-
dc.date.accessioned2025-04-25T02:19:49Z-
dc.date.available2025-04-25T02:19:49Z-
dc.date.issued2024-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/4664-
dc.description.abstractLow light image enhancement remains challenging due to limited availability of real low/normal light image pairs for training. Simple image simulation techniques used for data augmentation fail to accurately model noise and distortions present in real low light photos. In this work, we propose N2LDiff, a novel generative model leveraging diffusion processes to synthesize realistic low light images from normal light counterparts. Our model leverages the noise modeling capabilities of diffusion processes to generate low light images with accurate noise, blurring, and color distortions. We make the following key contributions: (1) We develop a novel N2LDiff model that can generate varied low light images from the same normal light input via diffusion processes. (2) We introduce a new benchmark for low light image synthesis using existing datasets. (3) Leveraging N2LDiff, we construct a large-scale low light dataset. Our generated data will facilitate training and evaluation of deep learning models for low light enhancement tasks.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.titleGenerative strategy for low and normal light image pairs with enhanced statistical fidelityen_US
dc.typeconference proceedingsen_US
dc.relation.publicationProceedings of the 2024 IEEE International Conference on Consumer Electronics (ICCE)en_US
dc.identifier.doi10.1109/ICCE59016.2024.10444437-
dc.contributor.affiliationYam Pak Charitable Foundation School of Computing and Information Sciencesen_US
dc.relation.isbn9798350324136en_US
dc.cihe.affiliatedYes-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypeconference proceedings-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.deptYam Pak Charitable Foundation School of Computing and Information Sciences-
crisitem.author.deptYam Pak Charitable Foundation School of Computing and Information Sciences-
crisitem.author.deptYam Pak Charitable Foundation School of Computing and Information Sciences-
crisitem.author.orcid0000-0001-8280-0367-
crisitem.author.orcid0000-0001-7479-0787-
Appears in Collections:CIS Publication
SFX Query Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.