Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/447
DC FieldValueLanguage
dc.contributor.authorXie, Haoran-
dc.contributor.authorWang, Philips Fu Lee-
dc.contributor.authorWong, Tak Lam-
dc.contributor.otherHuang, X.-
dc.contributor.otherRao, Y.-
dc.date.accessioned2021-03-29T08:21:29Z-
dc.date.available2021-03-29T08:21:29Z-
dc.date.issued2017-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/447-
dc.description.abstractCross-domain sentiment classification aims to tag sentiments for a target domain by labeled data from a source domain. Due to the difference between domains, the accuracy of a trained classifier may be very low. In this paper, we propose a boosting-based learning framework named TR-TrAdaBoost for cross-domain sentiment classification. We firstly explore the topic distribution of documents, and then combine it with the unigram TrAdaBoost. The topic distribution captures the domain information of documents, which is valuable for cross domain sentiment classification. Experimental results indicate that TR-TrAdaBoost represents documents well and boost the performance and robustness of TrAdaBoost.en_US
dc.language.isoenen_US
dc.publisherAAAI Pressen_US
dc.titleCross-domain sentiment classification via topic-related TrAdaBoosten_US
dc.typeconference proceedingsen_US
dc.relation.publicationProceedings of the 31st AAAI Conference on Artificial Intelligence-
dc.contributor.affiliationSchool of Computing and Information Sciences-
dc.relation.issn2374-3468-
dc.description.volume31en_US
dc.description.issue1en_US
dc.cihe.affiliatedYes-
item.languageiso639-1en-
item.fulltextWith Fulltext-
item.openairetypeconference proceedings-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.cerifentitytypePublications-
crisitem.author.deptYam Pak Charitable Foundation School of Computing and Information Sciences-
crisitem.author.deptRita Tong Liu School of Business and Hospitality Management-
crisitem.author.deptYam Pak Charitable Foundation School of Computing and Information Sciences-
Appears in Collections:CIS Publication
Files in This Item:
File Description SizeFormat
View Online103 BHTMLView/Open
SFX Query Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.