Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/4431
DC FieldValueLanguage
dc.contributor.authorLiu, Huien_US
dc.contributor.otherPeng, Z.-
dc.contributor.otherJia, Y.-
dc.contributor.otherHou, J.-
dc.date.accessioned2024-03-26T08:49:36Z-
dc.date.available2024-03-26T08:49:36Z-
dc.date.issued2023-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/4431-
dc.description.abstractExisting deep embedding clustering methods fail to sufficiently utilize the available off-the-shelf information from feature embeddings and cluster assignments, limiting their performance. To this end, we propose a novel method, namely deep attention-guided graph clustering with dual self-supervision (DAGC). Specifically, DAGC first utilizes a heterogeneity-wise fusion module to adaptively integrate the features of the auto-encoder and the graph convolutional network in each layer and then uses a scale-wise fusion module to dynamically concatenate the multi-scale features in different layers. Such modules are capable of learning an informative feature embedding via an attention-based mechanism. In addition, we design a distribution-wise fusion module that leverages cluster assignments to acquire clustering results directly. To better explore the off-the-shelf information from the cluster assignments, we develop a dual self-supervision solution consisting of a soft self-supervision strategy with a Kullback-Leibler divergence loss and a hard self-supervision strategy with a pseudo supervision loss. Extensive experiments on nine benchmark datasets validate that our method consistently outperforms state-of-the-art methods. Especially, our method improves the ARI by more than 10.29% over the best baseline.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartofIEEE Transactions on Circuits and Systems for Video Technologyen_US
dc.titleDeep attention-guided graph clustering with dual self-supervisionen_US
dc.typejournal articleen_US
dc.identifier.doi10.1109/TCSVT.2022.3232604-
dc.contributor.affiliationSchool of Computing and Information Sciencesen_US
dc.relation.issn1558-2205en_US
dc.description.volume33en_US
dc.description.issue7en_US
dc.description.startpage3296en_US
dc.description.endpage3307en_US
dc.cihe.affiliatedYes-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.openairetypejournal article-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
crisitem.author.deptYam Pak Charitable Foundation School of Computing and Information Sciences-
Appears in Collections:CIS Publication
SFX Query Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.