Please use this identifier to cite or link to this item:
https://repository.cihe.edu.hk/jspui/handle/cihe/426
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Xie, Haoran | - |
dc.contributor.author | Wang, Philips Fu Lee | - |
dc.contributor.author | Wong, Tak Lam | - |
dc.contributor.other | Li, X. | - |
dc.contributor.other | Rao, Y. | - |
dc.contributor.other | Liu, X. | - |
dc.date.accessioned | 2021-03-27T05:55:14Z | - |
dc.date.available | 2021-03-27T05:55:14Z | - |
dc.date.issued | 2019 | - |
dc.identifier.uri | https://repository.cihe.edu.hk/jspui/handle/cihe/426 | - |
dc.description.abstract | Social emotion classification draws many natural language processing researchers’ attention in recent years, since analyzing user-generated emotional documents on the Web is quite useful in recommending products, gathering public opinions, and predicting election results. However, the documents that evoke prominent social emotions are usually mixed with noisy instances, and it is also challenging to capture the textual meaning of short messages. In this work, we focus on reducing the impact of noisy instances and learning a better representation of sentences. For the former, we introduce an “emotional concentration” indicator, which is derived from emotional ratings to weight documents. For the latter, we propose a new architecture named PCNN, which utilizes two cascading convolutional layers to model the word-phrase relation and the phrase sentence relation. This model regards continuous tokens as phrases based on an assumption that neighboring words are very likely to have internal relations, and semantic feature vectors are generated based on the phrase representation. We also present a Bayesian-based model named WMCM to learn document-level semantic features. Both PCNN and WMCM classify social emotions by capturing semantic regularities in language. Experiments on two real-world datasets indicate that the quality of learned semantic vectors and the performance of social emotion classification can be improved by our models. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.ispartof | Data & Knowledge Engineering | en_US |
dc.title | Social emotion classification based on noise-aware training | en_US |
dc.type | journal article | en_US |
dc.identifier.doi | 10.1016/j.datak.2017.07.008 | - |
dc.contributor.affiliation | School of Computing and Information Sciences | - |
dc.relation.issn | 0169-023X | en_US |
dc.description.volume | 123 | en_US |
dc.cihe.affiliated | Yes | - |
item.languageiso639-1 | en | - |
item.fulltext | No Fulltext | - |
item.openairetype | journal article | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_6501 | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Yam Pak Charitable Foundation School of Computing and Information Sciences | - |
crisitem.author.dept | Rita Tong Liu School of Business and Hospitality Management | - |
crisitem.author.dept | Yam Pak Charitable Foundation School of Computing and Information Sciences | - |
Appears in Collections: | CIS Publication |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.