Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/4114
DC FieldValueLanguage
dc.contributor.authorLiu, Huien_US
dc.contributor.otherChau, L.-P.-
dc.date.accessioned2023-06-29T03:53:37Z-
dc.date.available2023-06-29T03:53:37Z-
dc.date.issued2019-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/4114-
dc.description.abstractThis paper presents a new “marine snow” removal method for deepsea videos based on robust temporal-spatial decomposition. For deepsea videos, the contents of adjacent frames are almost identical or change very little except for the rapidly moving “marine snow” as well as noise, indicating that there exists high temporal-spatial correlation between the successive frames. Based on this observation, we first robustly approximate the deepsea video to recover its background using online robust principal component analysis in a sub-video-by-sub-video manner. Since the structure information of background cannot be well preserved during the background modeling, we further extract such information from the approximation error to compensate the obtained background, which is also formulated as a constrained convex optimization problem. The experimental results demonstrate that our proposed method can achieve comparable or even better results than the state of the art approach.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofMultimedia Tools and Applicationsen_US
dc.titleDeepsea video descatteringen_US
dc.typejournal articleen_US
dc.identifier.doi10.1007/s11042-017-5474-3-
dc.contributor.affiliationSchool of Computing and Information Sciencesen_US
dc.relation.issn1573-7721en_US
dc.description.volume78en_US
dc.description.issue20en_US
dc.description.startpage28919en_US
dc.description.endpage28929en_US
dc.cihe.affiliatedNo-
item.languageiso639-1en-
item.fulltextWith Fulltext-
item.openairetypejournal article-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
crisitem.author.deptYam Pak Charitable Foundation School of Computing and Information Sciences-
Appears in Collections:CIS Publication
Files in This Item:
File Description SizeFormat
View Online198 BHTMLView/Open
SFX Query Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.