Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/4110
DC FieldValueLanguage
dc.contributor.authorLiu, Huien_US
dc.contributor.otherJia, Y.-
dc.contributor.otherHou, J.-
dc.contributor.otherKwong, S.-
dc.date.accessioned2023-06-29T03:13:40Z-
dc.date.available2023-06-29T03:13:40Z-
dc.date.issued2022-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/4110-
dc.description.abstractAs a variant of non-negative matrix factorization (NMF), symmetric NMF (SymNMF) can generate the clustering result without additional post-processing, by decomposing a similarity matrix into the product of a clustering indicator matrix and its transpose. However, the similarity matrix in the traditional SymNMF methods is usually predefined, resulting in limited clustering performance. Considering that the quality of the similarity graph is crucial to the final clustering performance, we propose a new semisupervised model, which is able to simultaneously learn the similarity matrix with supervisory information and generate the clustering results, such that the mutual enhancement effect of the two tasks can produce better clustering performance. Our model fully utilizes the supervisory information in the form of pairwise constraints to propagate it for obtaining an informative similarity matrix. The proposed model is finally formulated as a non-negativity-constrained optimization problem. Also, we propose an iterative method to solve it with the convergence theoretically proven. Extensive experiments validate the superiority of the proposed model when compared with nine state-of-the-art NMF models.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartofIEEE Transactions on Cyberneticsen_US
dc.titleSemi-supervised adaptive symmetric non-negative matrix factorizationen_US
dc.typejournal articleen_US
dc.identifier.doi10.1109/TCYB.2020.2969684-
dc.contributor.affiliationSchool of Computing and Information Sciencesen_US
dc.relation.issn2168-2275en_US
dc.description.volume51en_US
dc.description.issue5en_US
dc.description.startpage2550en_US
dc.description.endpage2562en_US
dc.cihe.affiliatedNo-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.openairetypejournal article-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
crisitem.author.deptYam Pak Charitable Foundation School of Computing and Information Sciences-
Appears in Collections:CIS Publication
SFX Query Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.