Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/3804
DC FieldValueLanguage
dc.contributor.authorSiu, Wan Chien_US
dc.contributor.authorCheng, Xi-
dc.contributor.otherYang, J.-
dc.date.accessioned2023-05-24T09:32:39Z-
dc.date.available2023-05-24T09:32:39Z-
dc.date.issued2023-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/3804-
dc.description.abstractLarge-scale blind face super-resolution is a significant image processing task with high practical value and wide applications. The task is more challenging than conventional image super-resolution since the degradation is more complex and the amount of useful information is very small inside the image. To address this problem, we propose Edge-guided Frequency-aware Generative Prior Network (EFGPN), a super-resolution method based on edge guidance, frequency constraint, and generative priors. The proposed edge guidance could aid the network in retaining more structural information. Frequency constraints suppress artifacts while allowing the network to generate good features across all frequency bands. The use of generative priors enables the network to produce photorealistic faces. The proposed EFGPN can blindly super-resolve low-resolution faces to high-quality faces. Experimental results indicate that our proposed EFGPN outperforms the state-of-the-arts under subjective and objective evaluations.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.titleLarge-scale blind face super-resolution via Edge-guided Frequency-aware Generative Facial Prior Networksen_US
dc.typeconference proceedingsen_US
dc.relation.publicationProceedings of 2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC 2022)en_US
dc.identifier.doi10.23919/APSIPAASC55919.2022.9980270-
dc.contributor.affiliationSchool of Computing and Information Sciencesen_US
dc.relation.isbn9786165904773en_US
dc.description.startpage1638en_US
dc.description.endpage1643en_US
dc.cihe.affiliatedYes-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.openairetypeconference proceedings-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.cerifentitytypePublications-
crisitem.author.deptYam Pak Charitable Foundation School of Computing and Information Sciences-
crisitem.author.deptYam Pak Charitable Foundation School of Computing and Information Sciences-
crisitem.author.orcid0000-0001-8280-0367-
Appears in Collections:CIS Publication
SFX Query Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.