Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/3284
DC FieldValueLanguage
dc.contributor.authorLeung, Andrew Yee Taken_US
dc.date.accessioned2022-05-23T02:30:09Z-
dc.date.available2022-05-23T02:30:09Z-
dc.date.issued1988-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/3284-
dc.description.abstractThe inverse iteration method for the linear eigenvalue problem is extended to the quadratic eigenvalue problem based on the famous Newtonian iteration for algebraic equations. The process is shown to converge to the desired modes by means of a newly introduced continuation parameter for highly non-conservative systems. Only physical co-ordinates are involved and the sparsity of the original matrices is preserved to achieve high computational efficiency. The required orthonormalization condition and the generalized Rayleigh's Quotient are given. The method can handle complex eigensolution without difficulties.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofJournal of Sound and Vibrationen_US
dc.titleInverse iteration for the quadratic eigenvalue problemen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/S0022-460X(88)80186-X-
dc.contributor.affiliationSchool of Computing and Information Sciencesen_US
dc.relation.issn0022-460Xen_US
dc.description.volume124en_US
dc.description.issue2en_US
dc.description.startpage249en_US
dc.description.endpage267en_US
dc.cihe.affiliatedNo-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.openairetypejournal article-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
crisitem.author.deptYam Pak Charitable Foundation School of Computing and Information Sciences-
Appears in Collections:CIS Publication
SFX Query Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.