Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/3279
DC FieldValueLanguage
dc.contributor.authorLeung, Andrew Yee Taken_US
dc.date.accessioned2022-05-23T02:09:48Z-
dc.date.available2022-05-23T02:09:48Z-
dc.date.issued1988-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/3279-
dc.description.abstractThe beam functions satisfying d<sup>4</sup>φ/dξ<sup>4</sup> = β<sup>4</sup>φ with the associated boundary conditions are convenient admissible comparison functions for the approximated solutions of complex structural problems by the well known Rayleigh-Ritz method. Reliable integration formulae for products of various beam functions φ and ψ with an arbitrary function θ are essential. Felgar's recurrence formula for ∫ θφψdξ is found to be in error and is corrected here. The condition when the characteristic values of θ and ψ are identical is also considered. A simple subroutine is given to evaluate ∫ θ(ξ)(d<sup>n</sup>φ/dξ<sup>n</sup>)(d<sup>m</sup>ψ/dξ<sup>m</sup>dξ for all possible sets of boundary conditions. Applications to the free vibration of nonuniform beams and plate systems are demonstrated.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofComputers & Structuresen_US
dc.titleIntegration of beam functionsen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/0045-7949(88)90332-X-
dc.contributor.affiliationSchool of Computing and Information Sciencesen_US
dc.relation.issn0045-7949en_US
dc.description.volume29en_US
dc.description.issue6en_US
dc.description.startpage1087en_US
dc.description.endpage1094en_US
dc.cihe.affiliatedNo-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.openairetypejournal article-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
crisitem.author.deptYam Pak Charitable Foundation School of Computing and Information Sciences-
Appears in Collections:CIS Publication
SFX Query Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.