Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/3275
DC FieldValueLanguage
dc.contributor.authorLeung, Andrew Yee Taken_US
dc.date.accessioned2022-05-23T01:48:03Z-
dc.date.available2022-05-23T01:48:03Z-
dc.date.issued1988-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/3275-
dc.description.abstractThe dynamic substructure method is extended to lightly or heavily damped systems. Both internal and external dampings are considered. The damped dynamic flexibility associated with the slave co-ordinates is first expanded in terms of the damped fixed interface natural modes and the condensed dynamic stiffness associated with the master co-ordinates is formed subsequently. The convergence of the condensed dynamic stiffness with respect to the damped natural modes can be improved by means of the static matrices. Since the dynamic stiffness method is equivalent to the modal synthesis method, the component mode method and Kron's method, the theory presented here is readily applicable to these methods are restricted to symmetric damping matrices.en_US
dc.language.isoenen_US
dc.publisherJohn Wiley & Sonsen_US
dc.relation.ispartofInternational Journal for Numerical Methods in Engineeringen_US
dc.titleDamped dynamic substructuresen_US
dc.typejournal articleen_US
dc.identifier.doi10.1002/nme.1620261102-
dc.contributor.affiliationSchool of Computing and Information Sciencesen_US
dc.relation.issn1097-0207en_US
dc.description.volume26en_US
dc.description.issue11en_US
dc.description.startpage2355en_US
dc.description.endpage2365en_US
dc.cihe.affiliatedNo-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.openairetypejournal article-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
crisitem.author.deptYam Pak Charitable Foundation School of Computing and Information Sciences-
Appears in Collections:CIS Publication
SFX Query Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.