Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/3268
DC FieldValueLanguage
dc.contributor.authorLeung, Andrew Yee Taken_US
dc.date.accessioned2022-05-20T10:09:26Z-
dc.date.available2022-05-20T10:09:26Z-
dc.date.issued1989-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/3268-
dc.description.abstractThe dynamic stability of skeletal systems subject to harmonic axial forces is of interest. Temporal discretization is achieved by Fourier expansion. The resulting differential equations in spatial co-ordinates alone are solved by the exact frequency-dependent shape functions. The dynamic stability boundaries are determined by studying the free vibration behaviour with periods T and 2T, where T is the period of the harmonic axial force. Since spatial discretization is completely eliminated, many stability boundaries can be determined accurately with the minimum number of elements.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofJournal of Sound and Vibrationen_US
dc.titleStability boundaries for parametrically excited systems by dynamic stiffnessen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/0022-460X(89)90596-8-
dc.contributor.affiliationSchool of Computing and Information Sciencesen_US
dc.relation.issn0022-460Xen_US
dc.description.volume132en_US
dc.description.issue2en_US
dc.description.startpage265en_US
dc.description.endpage273en_US
dc.cihe.affiliatedNo-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.openairetypejournal article-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
crisitem.author.deptYam Pak Charitable Foundation School of Computing and Information Sciences-
Appears in Collections:CIS Publication
SFX Query Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.