Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/3237
DC FieldValueLanguage
dc.contributor.authorLeung, Andrew Yee Taken_US
dc.contributor.otherLiu, Y. F.-
dc.date.accessioned2022-05-20T06:18:12Z-
dc.date.available2022-05-20T06:18:12Z-
dc.date.issued1992-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/3237-
dc.description.abstractFor a heavily damped system, either viscous or hysteresis or both, the homogeneous solution constitutes a generalized complex symmetric eigenproblem [A]{x}= λ [B]{x}, where [A] and [B]are complex symmetric matrices. The general complex method to solve the transformed eigenproblem [B] su−1 [A]{x} = λ {x} is very demanding in computation. A new method of Jacobi rotation is introduced to solve the complex symmetry eigenproblem completely. Full advantages of the symmetry are taken. The complex eigenvalues can be computed directly when both matrices are diagonalized. The complex eigenvectors are obtained as the products of the complex plane rotation. A Fortran subroutine and examples are given.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofComputers & Structuresen_US
dc.titleA generalized complex symmetric eigensolveren_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/0045-7949(92)90018-U-
dc.contributor.affiliationSchool of Computing and Information Sciencesen_US
dc.relation.issn0045-7949en_US
dc.description.volume43en_US
dc.description.issue6en_US
dc.description.startpage1183en_US
dc.description.endpage1186en_US
dc.cihe.affiliatedNo-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.openairetypejournal article-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
crisitem.author.deptYam Pak Charitable Foundation School of Computing and Information Sciences-
Appears in Collections:CIS Publication
SFX Query Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.