Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/3222
DC FieldValueLanguage
dc.contributor.authorLeung, Andrew Yee Taken_US
dc.contributor.otherZeng, S. P.-
dc.date.accessioned2022-05-20T03:08:55Z-
dc.date.available2022-05-20T03:08:55Z-
dc.date.issued1994-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/3222-
dc.description.abstractThe dynamic stiffness matrix method enables one to model an infinite number of natural modes by means of a small number of unknowns. The method has been extended to skeletal structures with uniform or non-uniform, straight or curved, damped or undamped beam members. For two-dimensional structures, if one of the dimensions can be eliminated by means of the Kantorovich method, the method still applies. However, for more complicated systems, analytical formulation of the dynamic stiffness is tedious. A computer assisted analytical method is introduced here for any structural members the differential governing equations of which are expressible in matrix polynomial form. Complex arithmetics are used to cater for all possible classification of the characteristic roots. Numerical examples are given and are compared with existing results.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofJournal of Sound and Vibrationen_US
dc.titleAnalytical formulation of dynamic stiffnessen_US
dc.typejournal articleen_US
dc.identifier.doi10.1006/jsvi.1994.1451-
dc.contributor.affiliationSchool of Computing and Information Sciencesen_US
dc.relation.issn0022-460Xen_US
dc.description.volume177en_US
dc.description.issue4en_US
dc.description.startpage555en_US
dc.description.endpage564en_US
dc.cihe.affiliatedNo-
item.languageiso639-1en-
item.openairetypejournal article-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
crisitem.author.deptYam Pak Charitable Foundation School of Computing and Information Sciences-
Appears in Collections:CIS Publication
SFX Query Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.