Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/3217
DC FieldValueLanguage
dc.contributor.authorLeung, Andrew Yee Taken_US
dc.contributor.otherMao, S. G.-
dc.date.accessioned2022-05-20T02:25:03Z-
dc.date.available2022-05-20T02:25:03Z-
dc.date.issued1995-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/3217-
dc.description.abstractWe make two contributions in this paper: (1) to form beam finite element matrices within the large deflection and small rotation assumptions and (2) to integrate the resulting equations by symplectic schemes. The inherent approximation is introduced by the assumed shape functions only in our finite element formulation. The induced axial force is not averaged and the stiffness is defined by the first-, second- and third-order matrices. In the solution stage we use symplectic integration which does not require the linearization of stiffness. All necessary conservative laws during numerical integration are observed. Both free and forced vibrations and damped and undamped vibrations are studied.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofComputers & Structuresen_US
dc.titleSymplectic integration of an accurate beam finite element in non-linear vibrationen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/0045-7949(94)00388-J-
dc.contributor.affiliationSchool of Computing and Information Sciencesen_US
dc.relation.issn0045-7949en_US
dc.description.volume54en_US
dc.description.issue6en_US
dc.description.startpage1135en_US
dc.description.endpage1147en_US
dc.cihe.affiliatedNo-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.openairetypejournal article-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
crisitem.author.deptYam Pak Charitable Foundation School of Computing and Information Sciences-
Appears in Collections:CIS Publication
SFX Query Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.