Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/3122
DC FieldValueLanguage
dc.contributor.authorLeung, Andrew Yee Taken_US
dc.contributor.otherRajendran, S.-
dc.date.accessioned2022-05-07T09:13:15Z-
dc.date.available2022-05-07T09:13:15Z-
dc.date.issued1996-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/3122-
dc.description.abstractThe bifurcation solutions and their stability of a three-hinged rod under spring constraints and a kind of follower force is investigated. The equations for the system are nonlinear and possess Z<sub>2</sub>⊕Z<sub>2</sub>⊕Z<sub>2</sub> symmetry property. The group theoretic concepts and the symbolic computer software, MATHEMATICA are used for solving the equations. Parametric diagrams are constructed by plotting the curves of codimension-one singularity. These curves partition the parameter space into regions in which the bifurcation diagrams are qualitatively similar. The bifurcation solutions and their stability at typical points in the parametric diagrams are discussed.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofComputers & Structuresen_US
dc.titleGlobal bifurcation of a three-hinged rod subject to a kind of follower forceen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/0045-7949(95)00163-B-
dc.contributor.affiliationSchool of Computing and Information Sciencesen_US
dc.relation.issn0045-7949en_US
dc.description.volume58en_US
dc.description.issue3en_US
dc.description.startpage513en_US
dc.description.endpage534en_US
dc.cihe.affiliatedNo-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.openairetypejournal article-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
crisitem.author.deptYam Pak Charitable Foundation School of Computing and Information Sciences-
Appears in Collections:CIS Publication
SFX Query Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.