Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/3105
DC FieldValueLanguage
dc.contributor.authorLeung, Andrew Yee Taken_US
dc.contributor.otherZhang, Q. C.-
dc.date.accessioned2022-05-07T04:22:43Z-
dc.date.available2022-05-07T04:22:43Z-
dc.date.issued1998-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/3105-
dc.description.abstractWe extend the normal form method to study the asymptotic solutions of strongly non-linear oscillatorsu+ω<sup>2</sup>u=f](u,u), wheref(u,u) contains only linear and cubic non-linear terms. The novel contribution is the ansatzu=ξ+ξ,u=iω1(ξ−ξ) where ω1is to be determined, allowing for the change of the fundamental frequency during the course of vibration, rather than usingu=ξ+ξ,u=iω(ξ−ξ) as suggested by Nayfeh. With the present method, not only the stability of the periodic solutions but also the asymptotic expressions for the periodic solutions can be obtained easily. The results obtained by the method presented coincide very well with the results obtained by numerical integration for the Duffing–van der Pol oscillator withf(u,u)=μ(1−u<sup>2</sup>)u−βu<sup>3</sup>. When ω=μ=β=1, Nayfeh's method givers qualitatively different results from the numerical integration while our method works well even when ω=1, μ=β=3, since Nayfeh's method is based on weak non-linearities and ω=1, μ=β=3 is beyond the valid range of assumption.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofJournal of Sound and Vibrationen_US
dc.titleComplex normal form for strongly nonlinear vibration systems exemplified by Duffing–van der Pol Equationen_US
dc.typejournal articleen_US
dc.identifier.doi10.1006/jsvi.1998.1561-
dc.contributor.affiliationSchool of Computing and Information Sciencesen_US
dc.relation.issn0022-460Xen_US
dc.description.volume213en_US
dc.description.issue5en_US
dc.description.startpage907en_US
dc.description.endpage914en_US
dc.cihe.affiliatedNo-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.openairetypejournal article-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
crisitem.author.deptYam Pak Charitable Foundation School of Computing and Information Sciences-
Appears in Collections:CIS Publication
SFX Query Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.