Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/3089
DC FieldValueLanguage
dc.contributor.authorLeung, Andrew Yee Taken_US
dc.contributor.otherGe, T.-
dc.date.accessioned2022-04-29T09:55:18Z-
dc.date.available2022-04-29T09:55:18Z-
dc.date.issued1998-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/3089-
dc.description.abstractThe invariant torus is a very important case in the study of nonlinear autonomous systems governed by ordinary differential equations (ODEs). In this paper a new numerical method is provided to approximate the multi-periodic surface formed by an invariant torus by embedding the governing ODEs onto a set of partial differential equations (PDEs). A new characteristic approach to determine the stability of resultant periodic surface is also developed. A system with two strongly coupled van der Pol oscillators is taken as an illustrative example. The result shows that the Toeplitz Jacobian Matrix/Fast Fourier Transform (TJM/FFT) approach introduced previously is accurate and efficient in this application. The application of the method to normal multi-modes of nonlinear Euler beam is given in [1].en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofNonlinear Dynamicsen_US
dc.titleConstruction of invariant torus using Toeplitz Jacobian Matrices/Fast Fourier Transform approachen_US
dc.typejournal articleen_US
dc.identifier.doi10.1023/A:1008246602555-
dc.contributor.affiliationSchool of Computing and Information Sciencesen_US
dc.relation.issn1573-269Xen_US
dc.description.volume15en_US
dc.description.issue3-
dc.description.startpage283en_US
dc.description.endpage305en_US
dc.cihe.affiliatedNo-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.openairetypejournal article-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
crisitem.author.deptYam Pak Charitable Foundation School of Computing and Information Sciences-
Appears in Collections:CIS Publication
SFX Query Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.