Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/3088
DC FieldValueLanguage
dc.contributor.authorLeung, Andrew Yee Taken_US
dc.contributor.otherChen, G.-
dc.contributor.otherChen, W.-
dc.date.accessioned2022-04-29T09:12:27Z-
dc.date.available2022-04-29T09:12:27Z-
dc.date.issued1998-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/3088-
dc.description.abstractTwo- and three-dimensional frictional contact problems are uniformly formulated as a system of non-differentiable equations based on variational inequality theory. Through constructing a simple continuously differentiable approximation function to the non-differentiable one, the smoothing Newton method is directly implemented as an exact method. Both the global convergence and the local quadratic convergent rate of the method are guaranteed. None of the additional variables and linear approximations on Coulomb friction law is introduced and hence the formulation exactly describes the frictional contact phenomenon in both two- and three-dimensional cases. Numerical experiments suggest that the method is very efficient and promising.en_US
dc.language.isoenen_US
dc.publisherJohn Wiley & Sonsen_US
dc.relation.ispartofInternational Journal for Numerical Methods in Engineeringen_US
dc.titleSmoothing Newton method for solving two- and three-dimensional frictional contact problemsen_US
dc.typejournal articleen_US
dc.identifier.doi10.1002/(SICI)1097-0207(19980330)41:6<1001::AID-NME319>3.0.CO;2-A-
dc.relation.issn1097-0207en_US
dc.description.volume41en_US
dc.description.issue6en_US
dc.description.startpage1001en_US
dc.description.endpage1027en_US
dc.cihe.affiliatedNo-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.openairetypejournal article-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
crisitem.author.deptYam Pak Charitable Foundation School of Computing and Information Sciences-
Appears in Collections:CIS Publication
SFX Query Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.