Please use this identifier to cite or link to this item:
https://repository.cihe.edu.hk/jspui/handle/cihe/3083
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Leung, Andrew Yee Tak | en_US |
dc.contributor.other | Zhang, Q. | - |
dc.date.accessioned | 2022-04-28T08:58:34Z | - |
dc.date.available | 2022-04-28T08:58:34Z | - |
dc.date.issued | 1995 | - |
dc.identifier.uri | https://repository.cihe.edu.hk/jspui/handle/cihe/3083 | - |
dc.description.abstract | We present a new method to calculate the focal value of ordinary differential equation by applying the theorem defined the relationship between the normal form and focal value, with the help of a symbolic computation language MATHEMATICA, and extending the matrix representation method. This method can be used to calculate the focal value of any high order terms. This method has been verified by an example. The advantage of this method is simple and more readily applicable, the result is directly obtained by substitution. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.relation.ispartof | Applied Mathematics and Mechanics | en_US |
dc.title | Studying the focal value of ordinary differential equations by normal form theory | en_US |
dc.title.alternative | 用範式理論研究常微分方程焦點量問題 | en_US |
dc.type | journal article | en_US |
dc.identifier.doi | 10.1007/BF02458614 | - |
dc.contributor.affiliation | School of Computing and Information Sciences | en_US |
dc.relation.issn | 1573-2754 | en_US |
dc.description.volume | 16 | en_US |
dc.description.issue | 9 | - |
dc.description.startpage | 891 | en_US |
dc.description.endpage | 900 | en_US |
dc.cihe.affiliated | No | - |
item.languageiso639-1 | en | - |
item.fulltext | No Fulltext | - |
item.openairetype | journal article | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_6501 | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Yam Pak Charitable Foundation School of Computing and Information Sciences | - |
Appears in Collections: | CIS Publication |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.