Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/3043
DC FieldValueLanguage
dc.contributor.authorLeung, Andrew Yee Taken_US
dc.contributor.otherChen, S. H.-
dc.contributor.otherChan, J. K. H.-
dc.date.accessioned2022-04-13T03:36:29Z-
dc.date.available2022-04-13T03:36:29Z-
dc.date.issued2000-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/3043-
dc.description.abstractThe semi-stable limit cycle and bifurcation of strongly non-linear oscillators of the form ẍ + g(x) = λƒ(x, ẋ, μ)ẋ is studied by the perturbation-incremental method. Firstly, the ordinary differential equation is transformed into an integral equation by a non-linear time transformation, then the initial solution for λ≈0 is obtained by using the perturbation method. Secondly, the solution for an arbitrary value of λ can be determined by using the incremental approach. Two examples are given to show the efficiency and accuracy of the present method.en_US
dc.language.isoenen_US
dc.publisherJohn Wiley & Sonsen_US
dc.relation.ispartofCommunications in Numerical Methods in Engineeringen_US
dc.titleA perturbation-incremental method for the calculation of semi-stable limit cycles of strongly non-linear oscillatorsen_US
dc.typejournal articleen_US
dc.contributor.affiliationSchool of Computing and Information Sciencesen_US
dc.relation.issn1069-8299en_US
dc.description.volume16en_US
dc.description.issue5en_US
dc.description.startpage301en_US
dc.description.endpage313en_US
dc.cihe.affiliatedNo-
item.languageiso639-1en-
item.fulltextWith Fulltext-
item.openairetypejournal article-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
crisitem.author.deptYam Pak Charitable Foundation School of Computing and Information Sciences-
Appears in Collections:CIS Publication
Files in This Item:
File Description SizeFormat
View Online222 BHTMLView/Open
SFX Query Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.