Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/3040
DC FieldValueLanguage
dc.contributor.authorLeung, Andrew Yee Taken_US
dc.contributor.otherLim, C. W.-
dc.contributor.otherWu, B. S.-
dc.contributor.otherKitipornchai, S.-
dc.date.accessioned2022-04-12T09:00:20Z-
dc.date.available2022-04-12T09:00:20Z-
dc.date.issued2001-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/3040-
dc.description.abstractThis paper deals with nonlinear oscillations of a conservative, nonnatural, single-degree-of-freedom system with odd nonlinearity. By combining the linearization of the governing equation with the method of harmonic balance, we establish approximate analytic solutions for the nonlinear oscillations of the system.Unlike the classical harmonic balance method linearizaion is performed prior to proceeding with harmonic balancing thus resulting in linear algebraic equations instead of nonlinear algebraic equations. Hence,we are able to establish these approximate analytic formulas for the exact solution. These approximate solutions are valid for small as well as large amplitudes of oscillation.en_US
dc.language.isoenen_US
dc.publisherJilin Science and Technology Pressen_US
dc.titleAnalytic approximations to nonlinear oscillatory systemsen_US
dc.typeconference proceedingsen_US
dc.relation.publicationProceedings of the Asia-Pacific Vibration Conference 2001 (Volume 1)en_US
dc.contributor.affiliationSchool of Computing and Information Sciencesen_US
dc.relation.isbn7538424849en_US
dc.description.startpage146en_US
dc.description.endpage150en_US
dc.cihe.affiliatedNo-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.openairetypeconference proceedings-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.cerifentitytypePublications-
crisitem.author.deptYam Pak Charitable Foundation School of Computing and Information Sciences-
Appears in Collections:CIS Publication
SFX Query Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.