Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/3036
DC FieldValueLanguage
dc.contributor.authorLeung, Andrew Yee Taken_US
dc.contributor.otherLu, W. Z.-
dc.contributor.otherFan, H. Y.-
dc.contributor.otherWang, W. J.-
dc.contributor.otherLo, S. M.-
dc.contributor.otherWong, J. C. K.-
dc.date.accessioned2022-04-12T08:08:49Z-
dc.date.available2022-04-12T08:08:49Z-
dc.date.issued2001-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/3036-
dc.description.abstractModeling of the pollutants' concentrations comprises an important part in the field of atmospheric environment research. Neural network modeling is regarded as a reliable and cost-effective method to achieve such prediction task. In this paper, the principal component analysis (PCA) technique is used to reduce and orthogonalize input variables of neural network (NN) model, which is established for forecasting the pollutants' concentrations in downtown area of Hong Kong. The new approach is demonstrated and validated with two practical cases of predicting the respirable suspended particulate (RSP) levels in central area in Hong Kong. The simulation results show that the proposed method is feasible and efficient.en_US
dc.language.isoenen_US
dc.publisherCivil-Comp Pressen_US
dc.titlePollution modelling for Hong Kong downtown area using principal component analysis and artificial neural networksen_US
dc.typeconference proceedingsen_US
dc.relation.publicationProceedings of the 6th International Conference on the Application of Artificial Intelligence to Civil and Structural Engineeringen_US
dc.contributor.affiliationSchool of Computing and Information Sciencesen_US
dc.relation.isbn9780948749797en_US
dc.description.startpage59en_US
dc.description.endpage60en_US
dc.cihe.affiliatedNo-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.openairetypeconference proceedings-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.cerifentitytypePublications-
crisitem.author.deptYam Pak Charitable Foundation School of Computing and Information Sciences-
Appears in Collections:CIS Publication
SFX Query Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.