Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/3027
DC FieldValueLanguage
dc.contributor.authorLeung, Andrew Yee Taken_US
dc.contributor.otherZhang, Q. C.-
dc.contributor.otherCooper, J. E.-
dc.date.accessioned2022-04-12T03:39:14Z-
dc.date.available2022-04-12T03:39:14Z-
dc.date.issued2001-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/3027-
dc.description.abstractAn efficient method to calculate the normal form and the associated nonlinear transformations for the semi-simple case is given in this paper. The one step transformation concept is adopted to make the approach very easy to be programmed. An intelligent judgement is used to simplify the tedious calculation. This method can be used to calculate high order normal form (without limitation, up to the capacity of the computer) of high dimensional (until dimension 9) ordinary differential equations of the nonlinear oscillators. A program in Mathmatica language is designed to perform the calculation. Six examples are given in order to verify the method and to show the efficiency of the program.en_US
dc.language.isoenen_US
dc.publisherWatam Pressen_US
dc.relation.ispartofDynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysisen_US
dc.titleComputation of normal forms for higher dimensional semi-simple systemsen_US
dc.typejournal articleen_US
dc.contributor.affiliationSchool of Computing and Information Sciencesen_US
dc.relation.issn1918-2538en_US
dc.description.volume8en_US
dc.description.issue4a-
dc.description.startpage559en_US
dc.description.endpage574en_US
dc.cihe.affiliatedNo-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.openairetypejournal article-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
crisitem.author.deptYam Pak Charitable Foundation School of Computing and Information Sciences-
Appears in Collections:CIS Publication
SFX Query Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.