Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/3018
DC FieldValueLanguage
dc.contributor.authorLeung, Andrew Yee Taken_US
dc.contributor.otherLu, W. Z.-
dc.contributor.otherFan, H. Y.-
dc.contributor.otherWang, W. J.-
dc.contributor.otherLo, S. M.-
dc.date.accessioned2022-04-12T01:40:28Z-
dc.date.available2022-04-12T01:40:28Z-
dc.date.issued2002-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/3018-
dc.description.abstractModeling of the pollutant concentrations is an important part in the field of atmospheric environment research. Neural network modeling is regarded as a reliable and cost-effective method to achieve such prediction task. In this paper, the principal component analysis technique is used to reduce and orthogonalize input variables of the neural network model, which is established for forecasting the pollutant concentrations in downtown area of Hong Kong. The new approach is demonstrated and validated with two practical cases of predicting the respirable suspended particulate levels in the central area of Hong Kong. The simulation results show that the proposed method is feasible and efficient.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.titlePrediction of respirable suspended particulate level in Hong Kong downtown area using principal component analysis and artificial neural networksen_US
dc.typeconference proceedingsen_US
dc.relation.publicationProceedings of the 4th World Congress on Intelligent Control and Automation (Volume 1)en_US
dc.identifier.doi10.1109/WCICA.2002.1022066-
dc.contributor.affiliationSchool of Computing and Information Sciencesen_US
dc.relation.isbn0780372689en_US
dc.description.startpage49en_US
dc.description.endpage53en_US
dc.cihe.affiliatedNo-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.openairetypeconference proceedings-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.cerifentitytypePublications-
crisitem.author.deptYam Pak Charitable Foundation School of Computing and Information Sciences-
Appears in Collections:CIS Publication
SFX Query Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.