Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/3006
DC FieldValueLanguage
dc.contributor.authorLeung, Andrew Yee Taken_US
dc.contributor.otherWang, W. J.-
dc.contributor.otherLu, W. Z.-
dc.contributor.otherXu, Z. B.-
dc.contributor.otherLo, S. M.-
dc.contributor.otherWang, X. K.-
dc.date.accessioned2022-04-11T06:47:47Z-
dc.date.available2022-04-11T06:47:47Z-
dc.date.issued2002-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/3006-
dc.description.abstractThe determination of the proper size of an artificial neural network (ANN) is recognized to be crucial, especially for its practical implementation in important issues such as learning and generalization. In the paper, an effective design method of neural network architectures is presented. The network is firstly trained by a dynamic constructive method until the error is satisfied. The trained network is then pruned by genetic algorithm (GA). The simulation results demonstrate the advantages in generalization and expandability of the proposed method.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.titleOptimal feed-forward neural networks based on the combination of constructing and pruning by genetic algorithmsen_US
dc.typeconference proceedingsen_US
dc.relation.publicationProceedings of the 2002 International Joint Conference on Neural Networks (IJCNN'02)en_US
dc.identifier.doi10.1109/IJCNN.2002.1005546-
dc.contributor.affiliationSchool of Computing and Information Sciencesen_US
dc.relation.isbn0780372786en_US
dc.description.startpage636en_US
dc.description.endpage641en_US
dc.cihe.affiliatedNo-
item.languageiso639-1en-
item.openairetypeconference proceedings-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
crisitem.author.deptYam Pak Charitable Foundation School of Computing and Information Sciences-
Appears in Collections:CIS Publication
SFX Query Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.