Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/3002
DC FieldValueLanguage
dc.contributor.authorLeung, Andrew Yee Taken_US
dc.contributor.otherLu, W. Z.-
dc.contributor.otherWang, W. J.-
dc.contributor.otherXu, Z. B.-
dc.contributor.otherLo, S. M.-
dc.contributor.otherFan, H. Y.-
dc.date.accessioned2022-04-11T05:48:09Z-
dc.date.available2022-04-11T05:48:09Z-
dc.date.issued2002-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/3002-
dc.description.abstractForecasting of air quality parameters is an important topic of atmospheric and environmental research today due to the health impact caused by airborne pollutants existing in urban areas. The support vector machine (SVM), as a novel type of learning machine based on statistical learning theory, can be used for regression and time series prediction and has been reported to perform well with some promising results. The work presented examines the feasibility of applying SVM to predict pollutant concentrations. The functional characteristics of the SVM are also investigated. The experimental comparison between the SVM and the classical radial basis function (RBF) network demonstrates that the SVM is superior to conventional RBF in predicting air quality parameters with different time series.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.titleAir pollutant parameter forecasting using support vector machinesen_US
dc.typeconference proceedingsen_US
dc.relation.publicationProceedings of the 2002 International Joint Conference on Neural Networks (IJCNN'02)en_US
dc.identifier.doi10.1109/IJCNN.2002.1005545-
dc.contributor.affiliationSchool of Computing and Information Sciencesen_US
dc.relation.isbn0780372786en_US
dc.description.startpage630en_US
dc.description.endpage635en_US
dc.cihe.affiliatedNo-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.openairetypeconference proceedings-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.cerifentitytypePublications-
crisitem.author.deptYam Pak Charitable Foundation School of Computing and Information Sciences-
Appears in Collections:CIS Publication
SFX Query Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.