Please use this identifier to cite or link to this item:
https://repository.cihe.edu.hk/jspui/handle/cihe/2819
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Leung, Andrew Yee Tak | en_US |
dc.contributor.other | Zhang, Q. C. | - |
dc.date.accessioned | 2022-03-30T09:24:36Z | - |
dc.date.available | 2022-03-30T09:24:36Z | - |
dc.date.issued | 2003 | - |
dc.identifier.uri | https://repository.cihe.edu.hk/jspui/handle/cihe/2819 | - |
dc.description.abstract | An efficient method for calculating the normal form and the associated non-linear transformations for the semi-simple case without central manifold reduction is given in this paper. The one-step transformation concept is adopted for easy programming. This method can be used to calculate high order normal forms of high-dimensional ordinary differential equations of non-linear oscillators. A program in MATHEMATICA language is designed to perform the calculation. Three examples are given in order to verify the method and to show the efficiency of the program. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.ispartof | Journal of Sound and Vibration | en_US |
dc.title | Normal form computation without central manifold reduction | en_US |
dc.type | journal article | en_US |
dc.identifier.doi | 10.1016/S0022-460X(02)01626-7 | - |
dc.contributor.affiliation | School of Computing and Information Sciences | en_US |
dc.relation.issn | 0022-460X | en_US |
dc.description.volume | 266 | en_US |
dc.description.issue | 2 | en_US |
dc.description.startpage | 261 | en_US |
dc.description.endpage | 279 | en_US |
dc.cihe.affiliated | No | - |
item.languageiso639-1 | en | - |
item.fulltext | No Fulltext | - |
item.openairetype | journal article | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_6501 | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Yam Pak Charitable Foundation School of Computing and Information Sciences | - |
Appears in Collections: | CIS Publication |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.