Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/2816
DC FieldValueLanguage
dc.contributor.authorLeung, Andrew Yee Taken_US
dc.contributor.otherJi, J. C.-
dc.date.accessioned2022-03-30T08:57:28Z-
dc.date.available2022-03-30T08:57:28Z-
dc.date.issued2003-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/2816-
dc.description.abstractThe effect of non-linear magnetic forces on the non-linear response of the shaft is examined for the case of superharmonic resonance in this paper. It is shown that the steady-state superharmonic periodic solutions lose their stability by either saddle-node or Hopf bifurcations. The system exhibits many typical characteristics of the behavior of non-linear dynamical systems such as multiple coexisting solutions, jump phenomenon, and sensitive dependence on initial conditions. The effects of the feedback gains and imbalance eccentricity on the non-linear response of the system are studied. Finally, numerical simulations are performed to verify the analytical predictions.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofInternational Journal of Non-Linear Mechanicsen_US
dc.titleNon-linear oscillations of a rotor-magnetic bearing system under superharmonic resonance conditionsen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/S0020-7462(01)00136-6-
dc.contributor.affiliationSchool of Computing and Information Sciencesen_US
dc.relation.issn0020-7462en_US
dc.description.volume38en_US
dc.description.issue6en_US
dc.description.startpage829en_US
dc.description.endpage835en_US
dc.cihe.affiliatedNo-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptYam Pak Charitable Foundation School of Computing and Information Sciences-
Appears in Collections:CIS Publication
SFX Query Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.